Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

On a class of nonlinear fractional Schrödinger-Poisson systems

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...

متن کامل

Global Existence and Asymptotic Behavior of Weak Solutions to Nonlinear Thermoviscoelastic Systems with Clamped Boundary Conditions

This paper is concerned with global existence, uniqueness, and asymptotic behavior, as time tends to infinity, of weak solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions. The constitutive assumptions for the Helmholtz free energy include the model for the study of phase transitions in shape memory alloys. To describe phase transitions between different configurat...

متن کامل

Existence of Solutions for a Modified Nonlinear Schrödinger System

We are concerned with the followingmodified nonlinear Schrödinger system: −Δu+u−(1/2)uΔ(u2) = (2α/(α+β))|u||V|u, x ∈ Ω, −ΔV+V−(1/2)VΔ(V2) = (2β/(α+β))|u||V|V, x ∈ Ω, u = 0, V = 0, x ∈ ∂Ω, whereα > 2, β > 2, α+β < 2⋅2, 2∗ = 2N/(N−2) is the critical Sobolev exponent, andΩ ⊂ RN (N ≥ 3) is a bounded smooth domain. By using the perturbationmethod, we establish the existence of both positive and nega...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2016

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.4941036